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Abstract—This paper considers discrete time-invariant systems (with constant parameters)
described by dynamic models in the presence of exogenous disturbances. For such systems, the
problem of estimating unknown inputs using interval observers is studied. The solution is based
on a minimal-dimension disturbance-insensitive model of the original system. For this model,
an interval observer is designed and then used to estimate the unknown inputs. The theoretical
results are illustrated with a practical example.
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1. INTRODUCTION AND PROBLEM STATEMENT

The problem of estimating unknown inputs of dynamic systems has theoretical and applied
significance, particularly for determining the changes in system parameters due to arising faults
to parry these changes or the level of exogenous disturbances by a control system. For systems
described by continuous-time models, in the past twenty-five years, this problem has been solved
using sliding mode observers [1–3].

On the other hand, interval observers have been applied in recent years to estimate the com-
ponents of the state vector of dynamic systems. At each time instant, such observers produce an
estimate of the set of admissible values of the state vector (or a given linear function of this vector)
for various classes of dynamic systems with uncertainty. Detailed reviews of the contemporary
results were provided in [4–6]; solutions for various classes of systems (continuous, discrete, hybrid,
and delayed), as well as practical applications, can be found in [7–14]. A peculiarity is that inter-
val observers involve simple means to consider various types of uncertainty in systems (exogenous
disturbances, measurement noises, and parametric uncertainties) and generate an interval surely
containing the values of the state vector (or a given linear function of this vector).

Interval observers were proposed in [15] to estimate unknown inputs in discrete-time linear
dynamic systems. This method is an alternative to sliding mode observers, which become ineffective
in the discrete case.

In this paper, the approach introduced in [15] is further developed to estimate unknown inputs
in discrete-time linear and nonlinear dynamic systems subjected to exogenous disturbances. In
contrast to [15], the system is not required to be minimum-phase; moreover, the approach pro-
posed therein involves several complex transformations of the system, in particular, reduction to a
descriptor form, which is not required below. By analogy with [5–13], the interval observer in [15]
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748 ZHIRABOK, ZUEV

was designed for the original transformed system and therefore has full dimension. In contrast,
the solution presented below uses a reduced model of the original system, simplifying the observer
design procedure and making the resulting interval observer insensitive to exogenous disturbances.
In some cases, this property ensures an exact estimate even in the presence of exogenous dis-
turbances. In addition, we overcome the matching condition requirement imposed in [15], which
restricts estimation capabilities.

2. MAIN MODELS AND RELATIONS

Consider a system described by the discrete-time nonlinear model

x(t + 1) = Fx(t) +Gu(t) +CΨ(x(t), u(t)) +Dd(t) + Lρ(t),

y(t) = Hx(t),
(2.1)

where x(t)∈R
n, u(t)∈R

m, and y(t)∈R
l are the state vector, control input, and output, respec-

tively; F, G, H, C, and L are known constant matrices; ρ(t)∈R
p is an unknown bounded time-

varying function that describes disturbances affecting the system; the term Dd(t) is an unknown
input to be estimated. In particular, such an input may manifest a system fault. By assumption,
d(t) is a scalar bounded function, i.e., d � d(t) � d for all t = 0, 1, 2, . . . with given values d and d.
The nonlinear component Ψ(x, u) is represented as

Ψ(x, u) =

⎛⎝ ϕ1(A1x, u)
. . .

ϕq(Aqx, u)

⎞⎠ ,
where A1, . . . , Aq are known constant row matrices, and ϕ1, . . . , ϕq are arbitrary nonlinear func-
tions.

Remark 1. By analogy with [15], the matching condition rank (HD) = rank (D) is supposed to
hold in the main part of this work, except for Section 7. This means that the unknown input d(t) is
included in the equations for the state vector components measured by system sensors. In contrast
to [15], where d(t) was an arbitrary-dimension function, we first assume that d(t) is a scalar and
then eliminate this constraint in Section 8.

The problem under consideration is first solved in the linear case, when C = 0. As stated, a solu-
tion will be found based on a reduced model of the original system. For this purpose, let us briefly
recall the results of [14, 16]. In the cited papers, a linear minimal-dimension disturbance-insensitive
model of system (2.1) was built to estimate some variable y∗(t) = R∗y(t) for the matrix R∗ to be
determined during the solution procedure. Such a model is described by the equations

x∗(t+ 1) = F∗x∗(t) + J∗y(t) +G∗u(t) +D∗d(t),

y∗(t) = H∗x∗(t) = R∗y(t),
(2.2)

where x∗(t)∈R
k, k < n denotes the model dimension and the matrices F∗, G∗, J∗, and H∗ have

to be determined. By assumption, there exists a matrix Φ such that x∗(t) = Φx(t). According
to [14, 16], the model matrices satisfy the equations

ΦF = F∗Φ + J∗H, H∗Φ = R∗H, ΦG = G∗, ΦD = D∗, ΦL = 0. (2.3)

A necessary condition for building such a system is the inequality

rank

(
H
L0

)
< rank (H) + rank (L0), (2.4)
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where L0 is a matrix of maximal rank such that L0L = 0. Indeed, the condition ΦL = 0 can be
written as Φ = NL0 for some matrix N. Since H∗Φ = R∗H, we have H∗NL0 = R∗H, holding
under condition (2.4). If the latter fails, then the disturbance-insensitive system estimating the
variable y∗(t) cannot be built. Below we will suppose the validity of condition (2.4).

3. BUILDING THE DISTURBANCE-INSENSITIVE MODEL

In the general case, the matrices F∗ and H∗ are given in the identification canonical form:

F∗ =

⎛⎜⎜⎜⎝
0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . .
0 0 0 . . . 0

⎞⎟⎟⎟⎠ , H∗ = (1 0 . . . 0). (3.1)

If system (2.2) is observable, it can always be reduced to this form [17]. Otherwise, it can be
reduced to a form with an observable subsystem; then the matrices of this subsystem can be found
in the form (3.1) [17]. The problem is solved based on the equation

( R∗ −J∗1 . . . −J∗k )(W (k) L(k)) = 0, (3.2)

where J∗i denotes the ith row of the matrix J∗,

W (k) =

⎛⎜⎜⎜⎝
HF k

HF k−1

. . .
H

⎞⎟⎟⎟⎠, L(k) =

⎛⎜⎜⎜⎝
HL HFL . . . HF k−1L
0 HL . . . HF k−2L
. . . . . . . . . . . .
0 0 . . . 0

⎞⎟⎟⎟⎠, k = 1, 2, . . . .

The matrix W (k) serves to build model (2.2) whereas the matrix L(k) ensures its insensitivity to
the disturbances, i.e., the condition ΦL = 0. Equation (3.2) has a nontrivial solution if

rank (W (k) L(k)) < l(k + 1) (3.3)

because, in this case, the rows of the compound matrix (W (k) L(k)) are linearly dependent, which
ensures the existence of a solution.

To build the model, it is necessary to determine a minimum number k from (3.3), starting from
k = 1, and the row ( R∗ −J∗1 . . . −J∗k ) from (3.2); next, using the relations

R∗H = Φ1, ΦiF = Φi+1 + J∗iH, i = 1, . . . , k − 1, ΦkF = J∗kH,

obtained from (2.3) and (3.1), the matrix Φ is constructed; finally, G∗ is found from (2.3), where Φi

denotes the ith row of the matrix Φ. Thus, the linear model (2.2) is built; by assumption, D∗ �= 0.

If equation (3.2) has no solution for all k < n, then the disturbance-insensitive model does not
exist. In this case, robust methods can be used; for example, see [18]. However, the resulting
estimate will be inexact.

4. PROBLEM SOLUTION

For the sake of simplicity, we begin with the assumption k = 1. In other words, it is possible to
build a one-dimensional model described by the equations

x∗(t+ 1) = J∗y(t) +G∗u(t) +D∗d(t),

y∗(t) = x∗(t).
(4.1)

(Under this assumption, F∗ = 0 and H∗ = 1.)
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Proposition 1. Model (4.1) exists under two conditions:

rank

(
HF
H

)
< rank (HF ) + rank (H),

R∗HL = 0.

Proof. For k = 1, from (3.2) it follows that

( R∗ −J∗ )

(
HF HL
H 0

)
= 0,

which implies the equality ( R∗ −J∗ )

(
HF
H

)
= 0. It holds under the first condition. The second

condition is immediate from the previous equality.

If at least one of these conditions fails, the model will be multidimensional. An additional
condition is the fault sensitivity requirement ΦD = D∗ �= 0, represented as R∗HD �= 0.

Remark 2. Since the values of all variables in model (4.1), except for d(t), are measurable, the
latter can be determined from the simple relation D∗d(t) = y∗(t + 1) − J∗y(t) −G∗u(t). Considering
the canonical form of the matrix F∗ and the resulting model, similar relations for the variable d(t)
can be derived by introducing time shifts for the variable y∗(t) and substituting some equations
into others (as is done in Section 7). For k > 2, these relations will be quite cumbersome, and using
interval observers allows significantly simplifying them. Therefore, despite the obvious solution for
k = 1, we will illustrate the application of such observers in order to extend the result to the general
case.

An interval observer is given by

x∗(t + 1) = G∗u(t) + J∗y(t) +D+
∗ d−D−

∗ d+ ge(t),

x∗(t + 1) = G∗u(t) + J∗y(t) +D+
∗ d−D−

∗ d+ ge(t),

y∗(t) = x∗(t), y∗(t) = x∗(t),
(4.2)

where A+ = max(0, A) and A− = A+ −A for an arbitrary matrix A (clearly, A+ � 0 and A− � 0);
the coefficient g is assigned to ensure the observer’s stability; finally, e(t) = y∗(t) − y∗(t) and
e(t) = y∗(t) − y∗(t).

For the interval observer, the condition x∗(0) � x∗(0) � x∗(0) implies x∗(t) � x∗(t) � x∗(t) for
all t � 0 [4]; hence, there exists a number α(t) � 0 such that, for all t � 0,

x∗(t) = x∗(t) + α(t)(x∗(t) − x∗(t)), (4.3)

or

x∗(t) = α(t)x∗(t) + (1 − α(t))x∗(t). (4.4)

Let us determine the value α(t + 1). For t := t+ 1, from (4.3) it follows that

R∗y(t+ 1) = x∗(t+ 1) = x∗(t + 1) + α(t + 1)(x∗(t+ 1) − x∗(t + 1)),

yielding

α(t + 1) =
R∗y(t+ 1) − x∗(t+ 1)

x∗(t+ 1) − x∗(t+ 1)
. (4.5)

Note that all values in this formula are measurable.
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Theorem 1. The function d(t) is estimated by

d̂(t) = D−1
∗ (g(α(t + 1)e(t) + (1 − α(t + 1))e(t))

+ α(t + 1)(D+
∗ d−D−

∗ d) + (1 − α(t + 1))(D+
∗ d−D−

∗ d)),
(4.6)

where the coefficient α(t+ 1) is given by (4.5).

Proof. In the expression (4.4) written for t := t+ 1, we replace the variables x∗(t+ 1), x∗(t+ 1)
and x∗(t+ 1) with the right-hand sides of equations (4.1) and (4.2), respectively:

J∗y(t) +G∗u(t) +D∗d(t) = α(t + 1)(G∗u(t) + J∗y(t) +D+
∗ d−D−

∗ d+ ge(t))

+ (1 − α(t + 1))(G∗u(t) + J∗y(t) +D+
∗ d−D−

∗ d+ ge(t)).
(4.7)

Standard transformations on the right-hand side lead to

J∗y(t) +G∗u(t) +D∗d(t) = g(α(t + 1)e(t) + (1 − α(t + 1))e(t)) +G∗u(t) + J∗y(t)

+ α(t + 1)(D+
∗ d−D−

∗ d) + (1 − α(t + 1))(D+
∗ d−D−

∗ d),

which finally gives (4.6).

Remark 3. Due to the canonical form of the matrix F∗, the observer (4.2) is stable even without
introducing the feedbacks ge(t) and ge(t); the latter are necessary only to obtain the estimate d̂(t),
and (in this case) it will be exact for all t > 0.

5. THE MULTIDIMENSIONAL MODEL

In the case k > 1, model (2.2) takes the form

x∗1(t + 1) = x∗2(t) + J∗1y(t) +G∗1u(t) +D∗1d(t),

x∗∗(t + 1) = F∗∗x∗∗(t) + J∗∗y(t) +G∗∗u(t) +D∗∗d(t),

y∗(t) = x∗1(t),

where x∗i denotes the ith component of the vector x∗, x∗∗ = (x∗2, . . . , x∗k); J∗∗, G∗∗, and D∗∗ are
the matrices J∗, G∗, and D∗, respectively, with the removed first rows; F∗∗ is the matrix (3.1) of
dimensions (k − 1) × (k − 1). By assumption, D∗1 �= 0 and D∗∗ = 0, i.e., the fault figures only in
the first equation. The interval observer has the form

x∗1(t+ 1) = x̂∗2(t) + J∗1y(t) +G∗1u(t) +D+
∗1d−D−

∗1d+ g1e(t),

x̂∗∗(t+ 1) = F∗∗x̂∗∗(t) + J∗∗y(t) +G∗∗u(t) + g∗∗e(t),

x∗1(t+ 1) = x̃∗2(t) + J∗1y(t) +G∗1u(t) +D+
∗1d−D−

∗1d+ g1e(t),

x̃∗∗(t+ 1) = F∗∗x̃∗∗(t) + J∗∗y(t) +G∗∗u(t) + g∗∗e(t),
y∗(t) = x∗1(t), y∗(t) = x∗1(t),

(5.1)

i.e., only the first component of the vector is described by an interval. Here x̂∗∗(t) and x̃∗∗(t) are
vectors of dimension (k − 1), the matrix (g1 g

T∗∗)T is assigned for ensuring the observer’s stability.
(This can always be done for the canonical form (3.1).)

In view of (5.1), the expression (4.7) is modified as follows:

x∗2(t) + J∗1y(t) +G∗1u(t) +D∗1d(t)

= α(t+ 1)(x̃∗2(t) +G∗1u(t) + J∗1y(t) +D+
∗1d−D−

∗1d+ g1e(t))

+ (1 − α(t + 1))(x̂∗2(t) +G∗1u(t) + J∗1y(t) +D+
∗1d−D−

∗1d+ g1e(t)).
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Here α(t + 1) is determined for the first components of the state vectors by analogy with (4.5):

α(t + 1) =
R∗y(t+ 1) − x∗1(t+ 1)

x∗1(t+ 1) − x∗1(t+ 1)
.

Standard transformations yield

D∗1d(t) = g1(α(t + 1)e(t) + (1 − α(t + 1))e(t))

+ α(t + 1)(D+
∗1d−D−

∗1d) + (1 − α(t + 1))(D+
∗1d−D−

∗1d)

+ α(t + 1)x̃∗2(t) + (1 − α(t + 1))x̂∗2(t) − x∗2(t).

(5.2)

Since the observer is stable, we have x̃∗2(t) → x∗2(t) and x̂∗2(t) → x∗2(t) and, consequently,
α(t + 1)x̃∗2(t) + (1 − α(t + 1))x̂∗2(t) − x∗2(t) → 0. As a result, the estimate d̂(t) given by (4.6)
with D∗ = D∗1 satisfies d̂(t) → d(t).

Remark 4. According to these relations, the use of an interval observer eliminates the effect of
all components of the vector x∗∗ = (x∗2, . . . , x∗k) on the final result.

6. CONSIDERATION OF THE NONLINEARITIES

The model design method in the nonlinear case is based on the linear model built previously. The
idea is to use the matrix Φ found for the linear model and analyze the possibility of transforming
the argument of the nonlinear component Ψ(x, u). This is done as follows; for details, see [18].

We calculate the matrix C∗ = ΦC and determine the numbers ji, . . . , js of its nonzero columns.
Next, it is necessary to verify the condition

rank

(
Φ
H

)
= rank

⎛⎜⎝ Φ
H
A′

⎞⎟⎠ , (6.1)

where the matrix A′ consists of the matrices A1, . . . , Aq with numbers ji, . . . , js as rows. If this
condition holds, the argument transformation is possible. After that, we build the nonlinear com-
ponent

Ψ∗(x∗, y, u) =

⎛⎜⎝ ϕj1(A∗j1z, u)
. . .

ϕjs(A∗jsz, u)

⎞⎟⎠ ,
where z =

(
x∗
y

)
and the row matrices A∗j1 , . . . , A∗js are found from the linear equations

Aj = A∗,j

(
Φ
H

)
, j = ji, . . . , js.

This component is added to the linear model (2.2). If condition (6.1) fails, it is necessary to
find another solution of equation (3.2) given the same or increased dimension k and repeat the
described procedure with the new matrix Φ. In the general case, the nonlinear model is described
by the equation

ẋ∗(t) = F∗x∗(t) + J∗y(t) +G∗u(t) + C∗Ψ∗(x∗(t), y(t), u(t)) +D∗d(t),

y∗(t) = H∗x∗(t).

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 8 2024



INTERVAL OBSERVERS FOR ESTIMATING UNKNOWN INPUTS 753

If the model is one-dimensional, its nonlinear component will depend on y∗(t) = x∗(t), and the
interval observer will appear in the model in the same way. As is easily observed, in this case, the
exact estimate will be given by (4.6).

In view of the assumption D∗1 �= 0 and D∗∗ = 0, we obtain the following descriptions in the
multidimensional case:

—for the model,

x∗1(t+ 1) = x∗2(t) + J∗1y(t) +G∗1u(t) + C∗1Ψ∗1(y∗(t), x∗∗(t), y(t), u(t))

+D∗1d(t),

x∗∗(t+ 1) = F∗∗x∗∗(t) + J∗∗y(t) +G∗∗u(t) + C∗∗Ψ∗∗(y∗(t), x∗∗(t), y(t), u(t));

—for the interval observer,

x∗1(t+ 1) = x̂∗2(t) + J∗1y(t) +G∗1u(t) + C∗1Ψ∗1(y∗(t), x̂∗∗(t), y(t), u(t))

+D+
∗1d−D−

∗1d+ g1e(t),

x̂∗∗(t+ 1) = F∗∗x̂∗∗(t) + J∗∗y(t) +G∗∗u(t) + C∗∗Ψ∗∗(y∗(t), x̂∗∗(t), y(t), u(t))

+ g∗∗e(t),
x∗1(t+ 1) = x̃∗2(t) + J∗1y(t) +G∗1u(t) + C∗1Ψ∗1(y∗(t), x̃∗∗(t), y(t), u(t))

+D+
∗1d−D−

∗1d+ g1e(t),

x̃∗∗(t+ 1) = F∗∗x̃∗∗(t) + J∗∗y(t) +G∗∗u(t) + C∗∗Ψ∗∗(y∗(t), x̃∗∗(t), y(t), u(t))

+ g∗∗e(t),
y∗(t) = x∗1(t), y∗(t) = x∗1(t),

where the matrices C∗1 and C∗∗ and the functions Ψ∗1 and Ψ∗∗ are determined by analogy with
J∗1 and J∗∗.

Considering the nonlinearities, the expression (5.2) is modified as follows:

D∗1d(t) = g1(α(t + 1)e(t) + (1 − α(t + 1))e(t))

+ α(t + 1)(D+
∗1d−D−

∗1d) + (1 − α(t + 1))(D+
∗1d−D−

∗1d)

+ α(t + 1)x̃∗2(t) + (1 − α(t+ 1))x̂∗2(t) − x∗2(t)
+ α(t + 1)C∗1Ψ∗1(y∗(t), x̃∗∗(t), y(t), u(t))

+ (1 − α(t+ 1))C∗1Ψ∗1(y∗(t), x̂∗∗(t), y(t), u(t))

− C∗1Ψ∗1(y∗(t), x∗∗(t), y(t), u(t)).

Since the gain matrix (g1 g
T∗∗)T is appropriately assigned to ensure the observer’s stability, we have

x̃∗∗(t) → x∗∗(t) and x̂∗∗(t) → x∗∗(t) and, by analogy with Section 5, d̂(t) → d(t).

7. NONFULFILLMENT OF THE MATCHING CONDITION

The matching condition may often fail; the proposed approach can be still applied in this case,
albeit in a more complex way. For the sake of simplicity, we consider a particular case where k = 2
and the term D∗d(t) is included in the second equation of the linear model:

x∗1(t + 1) = x∗2(t) + J∗1y(t) +G∗1u(t),

x∗2(t + 1) = J∗2y(t) +G∗2u(t) +D∗d(t),

y∗(t) = x∗1(t).
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The interval observer takes the form

x∗1(t+ 1) = x∗2(t) + J∗1y(t) +G∗1u(t) + g1e(t),

x∗2(t+ 1) = J∗2y(t) +G∗2u(t) + g2e(t) +D+
∗ d−D−

∗ d,
x̄∗1(t+ 1) = x̄∗2(t) + J∗1y(t) +G∗1u(t) + g1e(t),

x̄∗2(t+ 1) = J∗2y(t) +G∗2u(t) + g2e(t) +D+
∗ d−D−

∗ d,
y∗(t) = x∗1(t), y∗(t) = x∗1(t),

i.e., both components of the state vector are described by intervals; the variables e(t) and ē(t) are
determined as described above.

We find the first components of the model and the observer at the time instant (t+ 2) by
introducing time shifts in the first equations and replacing the variables x∗2(t+ 1), x∗2(t+ 1), and
x∗2(t + 1) with the right-hand sides of their equations:

x∗1(t+ 2) = J∗1y(t+ 1) +G∗1u(t + 1) + J∗2y(t) +G∗2u(t) +D∗d(t),

x∗1(t+ 2) = J∗1y(t+ 1) +G∗1u(t + 1) + J∗2y(t) +G∗2u(t)

+ g1e(t+ 1) + g2e(t) +D+
∗ d−D−

∗ d,
x̄∗1(t+ 2) = J∗1y(t+ 1) +G∗1u(t + 1) + J∗2y(t) +G∗2u(t)

+ g1e(t+ 1) + g2e(t) +D+
∗ d−D−

∗ d.

(7.1)

By analogy with (4.5), let us define

α(t + 2) =
R∗y(t+ 2) − x∗1(t+ 2)

x∗1(t+ 2) − x∗1(t+ 2)
, (7.2)

form the sum
x∗1(t+ 2) = α(t + 2)x∗1(t + 2) + (1 − α(t+ 2))x∗1(t + 2),

and replace the variables x∗1(t + 2), x∗1(t + 2), and x∗1(t + 2) with the right-hand sides of equa-
tions (7.1):

J∗1y(t+ 1) +G∗1u(t+ 1) + J∗2y(t) +G∗2u(t) +D∗d(t)

= α(t + 2)(J∗1y(t+ 1) +G∗1u(t+ 1) + J∗2y(t) +G∗2u(t)

+ g1e(t+ 1) + g2e(t) +D+
∗ d−D−

∗ d)

+ (1 − α(t + 2))(J∗1y(t+ 1) +G∗1u(t + 1) + J∗2y(t) +G∗2u(t)

+ g1e(t+ 1) + g2e(t) +D+
∗ d−D−

∗ d).

Standard transformations yield

D∗d(t) = g1(α(t + 2)e(t + 1) + (1 − α(t+ 2))e(t+ 1))

+ g2(α(t + 2)e(t) + (1 − α(t + 2))e(t))

+ α(t + 2)(D+
∗ d−D−

∗ d) + (1 − α(t + 2))(D+
∗ d−D−

∗ d),

(7.3)

and we finally arrive at the desired formula for d̂(t).

Remark 5. The expression (7.3) is obviously generalized to the case k > 2 where the term D∗d(t)
appears only in the last equation of the model and, considering Sections 5 and 6, to the case of its
presence only in one arbitrary equation and the nonlinear case. The proposed approach is difficult
to implement and simulate: it requires additional time delays for the variables e(t) and ē(t) in order
to obtain the expressions (7.3).
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8. THE SOLUTION BASED ON THE JORDAN CANONICAL FORM

If for all solutions of equation (3.2) the variable d(t) figures in two or more model components,
the identification canonical form should be replaced by the Jordan diagonal form, where

F∗ =

⎛⎜⎜⎜⎝
λ1 0 0 . . . 0
0 λ2 0 . . . 0
. . . . . . . . . . . .
0 0 0 . . . λk

⎞⎟⎟⎟⎠ ,
λ1, . . . , λk denote the eigenvalues (|λi| < 1), which are supposed different. This form can always
be obtained from the canonical form (3.1) [16]. As a result, the first equation in (2.3) turns into k
independent equations:

ΦiF = λiΦi + J∗iH, i = 1, . . . , k, (8.1)

and it becomes possible to build a one-dimensional model with the variable d(t). The additional
requirement ΦL = 0 (insensitivity to the disturbances) is considered as follows. In view of the
matrix L0 introduced above, equation (8.1) can be written as

(Ni − J∗i)

(
L0(F − λiIn)

H

)
= 0, i = 1, . . . , k, (8.2)

where In means an identity matrix of dimensions (n× n).

To build the model, we select an eigenvalue λ = λi so that the matrix Φ = NL0 given by (8.2)
satisfies the requirements D∗ = ΦD �= 0 and Φ = R∗H for some matrix R∗.

Remark 6. The requirements ΦD �= 0 and Φ = R∗H do not necessarily hold since the exogenous
disturbances represented by the matrix L0 may restrict the set of solutions of equation (8.2) even
under the matching condition. This restriction can be removed, but the resulting solution will be
inexact.

The model takes the form

x∗(t + 1) = λx∗(t) + J∗y(t) +G∗u(t) +D∗d(t),

y∗(t) = x∗(t).
(8.3)

Despite the one-dimensionality of the model, the technique shown in Remark 2 is inapplicable here:
the right-hand side of equation (8.3) includes the variable x∗(t). Therefore, it is necessary to design
an interval observer described by the equations

x∗(t+ 1) = λx∗(t) +G∗u(t) + J∗y(t) +D+
∗ d−D−

∗ d+ ge(t),

x∗(t+ 1) = λx̄∗(t) +G∗u(t) + J∗y(t) +D+
∗ d−D−

∗ d+ ge(t),

y∗(t) = x∗(t), y∗(t) = x∗(t).

(8.4)

Note that, regardless of the value of λ, the coefficient g can always be appropriately assigned to
make the observer stable.

Theorem 2. The function d(t) is estimated by

d̂(t) = D−1
∗ g(α(t + 1)e(t) + (1 − α(t + 1))e(t))

+ α(t+ 1)(D+
∗ d−D−

∗ d) + (1 − α(t + 1))(D+
∗ d−D−

∗ d)

+ λ(x∗(t) − x∗(t))(α(t + 1) − α(t)).

(8.5)

The variable α(t) is calculated by analogy with α(t + 1), and the variables x∗(t) and x∗(t) are
available for measurement.
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Proof. The coefficient α(t + 1) is given by (4.5), and the relation (4.7) becomes

λx∗(t) + J∗y(t) +G∗u(t) +D∗d(t)

= α(t + 1)(λx̄∗(t) +G∗u(t) + J∗y(t) +D+
∗ d−D−

∗ d+ ge(t))

+ (1 − α(t + 1))(λx∗(t) +G∗u(t) + J∗y(t) +D+
∗ d−D−

∗ d+ ge(t)).

The right-hand side of this equality is transformed as follows:

λx∗(t) + J∗y(t) +G∗u(t) +D∗d(t) = g(α(t + 1)e(t) + (1 − α(t + 1))e(t))

+ α(t+ 1)(D+
∗ d−D−

∗ d) + (1 − α(t + 1))(D+
∗ d−D−

∗ d)

+ J∗y(t) +G∗u(t) + α(t + 1)λx̄∗(t) + (1 − α(t+ 1))λx∗(t).
(8.6)

The variable x∗(t) on the left-hand side of (8.6) can be represented as

x∗(t) = α(t)x∗(t) + (1 − α(t))x∗(t).

By combining it with the two last terms in (8.6), we obtain

λ(x∗(t) − x∗(t))(α(t + 1) − α(t)),

which finally yields (8.5).

Remark 7. The described approach can also be applied to the unknown vector input d(t) if the
matching condition holds. In this case, the solution of equation (8.2) is found separately for each
component of this vector, and the observer (8.4) is built for each component of the vector as well.
Perhaps, it will be impossible to build the disturbance-insensitive observer for some components.

9. A PRACTICAL EXAMPLE

Consider a discretized model of an electric drive of the form

x1(t+ 1) = k1x2(t) + x1(t),

x2(t+ 1) = k2x2(t) + k3x3(t) + ρ(t),

x3(t+ 1) = k4x2(t) + k5x3(t) + k6u(t) + d(t),

y1(t) = x1(t), y2(t) = x3(t),

(9.1)

where x1 is the rotation angle of the gearbox output shaft; x2 is the angular velocity of the electric
motor shaft, and x3 is the electric motor current. The coefficients k1, . . . , k6 depend on the drive
parameters and the sampling interval; the disturbance ρ(t) is caused by an external load moment
reduced to the motor shaft; the fault represented by the function d(t) is caused by a change in the
active resistance of the armature circuit, which is expressed through a corresponding change in the
value of the coefficient k5 : if Δk5(t) is the variation of the coefficient k5, then d(t) = x3(t)Δk5(t).
This model is described by equations (2.1) with the matrices

F =

⎛⎜⎝ 1 k1 0
0 k2 k3
0 k4 k5

⎞⎟⎠, G =

⎛⎜⎝ 0
0
k6

⎞⎟⎠, H =

(
1 0 0
0 0 1

)
, L =

⎛⎜⎝ 0
1
0

⎞⎟⎠, D =

⎛⎜⎝ 0
0
1

⎞⎟⎠.
As is easily verified, the matching condition holds.

The disturbance-insensitive model is obtained by solving equation (3.2) with k = 1 and the
matrices

R∗ =
(
−k4 k1

)
, J∗ =

(
−k4 k1k5

)
, Φ =

(
−k4 0 k1

)
, G∗ = k1k6, D∗ = k1.
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Fig. 1. The graphs of the functions d(t) and ed(t) = d̂(t) − d(t).

Fig. 2. The graphs of the functions d(t) and ed(t) = d̂(t) − d(t).

The required model has the form

x∗(t+ 1) = −k4y1(t) + k1k5y2(t) + k1k6u(t) + k1d(t),

y∗(t) = x∗(t) = −k4y1(t) + k1y2(t).

The interval observer is described by

x∗(t+ 1) = −k1y1(t) + k1k5y2(t) + k1k6u(t) + k1d+ ge(t),

x∗(t+ 1) = −k1y1(t) + k1k5y2(t) + k1k6u(t) + k1d+ ge(t),

y∗(t) = x∗(t), y∗(t) = x∗(t),

(9.2)
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Fig. 3. The graphs of the functions ρ(t) and eρ(t) = ρ̂(t) − ρ(t).

Fig. 4. The graphs of the functions ρ(t), ρ̂(t), and eρ(t) = ρ̂(t) − ρ(t).

where e(t) = y∗(t) − y∗(t) and e(t) = y∗(t) − y∗(t). The estimate of the variable d(t) is given
by (4.6).

For Matlab simulations, we choose system (9.1) and the observer (9.2) with the control in-
put u(t) = 0.2 sin(t/10), the random disturbance ρ(t) with the uniform distribution on the inter-
val [−0.05; 0.05], d = −0.4, d̄ = 0.4, and g = −0.7. The simulation results with the initial con-
ditions x(0) = (0 0 0)T , x∗(0) = −1, and x∗(0) = 1 are presented in Figs. 1 and 2. In partic-
ular, Fig. 1 shows the behavior of the function d(t) and the estimation error d̂(t) − d(t) in the
case d(t) = 0.3 sin(t/2), t � 20, and d(t) = 1, t > 20; Fig. 2, the same graphs in the case d(t) =
0.3 sin(t/2), t � 20, and the random function d(t), t > 20, with the uniform distribution on the
interval [−0.5, 0.5]. The estimation error is almost zero.
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In addition, we estimate the unknown input ρ(t) of system (9.1) under d(t) = 0; by assumption,
|ρ(t)| � ρ∗, i.e., ρ = −ρ∗ and ρ = ρ∗. As is easily checked, the matching condition fails here. The
model solving the estimation problem takes dimension 2:

x∗1(t + 1) = x∗2(t) +Ky2(t),

x∗2(t + 1) = y1(t) + (k1k3 −Kk5)y2(t) + k1ρ(t),

y∗(t) = x∗1(t) = y1(t),

where K = k1(1 + k2)/k4. The interval observer has the form

x∗1(t + 1) = x∗2(t) +Ky2(t) + g1e(t),

x∗2(t + 1) = y1(t) + (k1k3 −Kk5)y2(t) − k1ρ∗ + g2e(t),

x̄∗1(t + 1) = x̄∗2(t) +Ky2(t) + g1e(t),

x̄∗2(t + 1) = y1(t) + (k1k3 −Kk5)y2(t) + k1ρ∗ + g2ē(t),

where e(t) = y∗(t) − x∗1(t), e(t) = y∗(t) − x∗1(t). The coefficient α(t + 2) is given by (7.2) with
R∗ = (1 0). The unknown input ρ(t) is estimated using the expression (7.3):

ρ̂(t) = k−1
1 (g1(α(t + 2)e(t + 1) + (1 − α(t + 2))e(t+ 1))

+ g2e(t)(α(t + 2)e(t) + (1 − α(t + 2))e(t))

+ α(t+ 2)k1ρ∗ − (1 − α(t + 2))k1ρ∗).

For Matlab simulations, we choose ρ∗ = 0.2, g1 = −0.4, and g2 = −0.1. The simulation results
are presented in Figs. 3 and 4, which show the behavior of the function ρ(t) and the estimation
error ρ̂(t) − ρ(t). In Fig. 3, the function ρ(t) is defined by ρ(t) = 0.3 sin(t/2), t � 40, and ρ(t) = 1,
t > 40; as above, the estimation error is almost zero. In Fig. 4, additional measurement noises are
introduced in the form of two independent random variables with the uniform distribution on the
interval [−0.01, 0.01]. Clearly, in this case, the estimation quality gets worse.

10. CONCLUSIONS

This paper has considered discrete time-invariant systems described by linear and nonlinear
dynamic models with exogenous disturbances under the so-called matching condition. Unknown
inputs in such systems have been estimated based on a minimal-dimension disturbance-insensitive
model of the original system. For this model, an interval observer has been designed; it produces an
exact estimate of the unknown inputs in several cases. The initial solution obtained initially for the
linear one-dimensional model has been extended to the multidimensional and nonlinear cases and
to the systems not satisfying the matching condition. The theoretical results have been illustrated
with a practical example.
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